THERMODYNAMIC AND TRANSPORT PROPERTIES OF MOIST AIR (PSYCHROMETRICS)

Psychrometric Chart
Barometric Pressure 1.01325 bar

Dry Bulb Temperature (°C) vs. Humidity Ratio (gm moisture/kg dry air)

Relative Humidity (%)
Wet Bulb Temperature (°C)
Specific Enthalpy (kJ/kg dry air)
Specific Volume (m³/kg dry air)

Drawn with ChemicalLogic MoistAirTab™ V1.0 Copyright © 1999 ChemicalLogic Corporation

ChemicalLogic Corporation, 99 South Bedford Street, Burlington MA, 01803 USA
Tel: 781.425.6738 Fax: 781.425.6741
www.chemicalogic.com
Software License Agreement

NOTICE: THIS IS A CONTRACT. BY INSTALLING AND USING THE SOFTWARE INDICATED BELOW, YOU ARE IMPLICITLY ACCEPTING ALL THE TERMS AND CONDITIONS OF THIS AGREEMENT.

MoistAirTab™ Thermodynamic and Transport Properties of Moist Air (Psychrometrics)

This ChemicaLogic Corporation ("ChemicaLogic") License Agreement accompanies the software product identified above and related documentation (SOFTWARE). The terms SOFTWARE shall also include any upgrades, modified versions or updates of the SOFTWARE licensed to you by ChemicaLogic. You must read this Agreement carefully before indicating acceptance at the end of the text of this Agreement. If you do not agree with the terms and conditions of this Agreement, decline where instructed during installation, and you will not be able to use the SOFTWARE. ChemicaLogic grants to you a nonexclusive license to use the SOFTWARE, provided that you agree to the following:

USE
You (an entity or a person) may use the SOFTWARE either on a stand-alone computer or on a network if you meet the following conditions.

STAND-ALONE COMPUTER USE
You must acquire one copy of the SOFTWARE for each computer on which the SOFTWARE will be installed. The primary user of the computer may also use the SOFTWARE on a home and/or laptop computer, provided the SOFTWARE is used on only one computer at a time.

SHARED NETWORK USE
You may use the SOFTWARE on a network provided you have purchased SOFTWARE equal to the maximum number of copies in use at any time. The SOFTWARE is "in use" on a computer when it is resident in memory or when executable and other files are installed on the hard drive or other storage device. Software which is stored on a server and not resident in memory on that machine is not considered "in use".

UPGRADE
If the SOFTWARE is an upgrade, you are authorized to use the SOFTWARE only if you are an authorized user of a qualifying product as determined by ChemicaLogic. The upgrade SOFTWARE replaces the qualifying product.

RESTRICTIONS
You may not alter, reverse engineer, decompile, or disassemble the SOFTWARE. You may not loan, rent, lease, or license the SOFTWARE or any copy. However, you may transfer the SOFTWARE on a permanent basis provided you transfer the SOFTWARE including the most recent update and all prior versions, this SOFTWARE Agreement, and all documentation and media, and you do not retain any copies.

COPYRIGHT
The SOFTWARE is owned by ChemicaLogic Corporation, and its structure, organization and code are the valuable trade secrets of ChemicaLogic. The SOFTWARE is also protected by United States Copyright Law and International Treaty provisions. You agree not to modify, adapt, translate, reverse engineer, decompile, disassemble or otherwise attempt to discover the source code of the SOFTWARE. You may use trademarks only to identify printed output produced by the SOFTWARE, in accordance with accepted trademark practice, including identification of trademark owner's name. Such use of any trademark does not give you any rights of ownership in that trademark. Except as stated above, this Agreement does not grant you any intellectual property rights in the SOFTWARE.

TRANSFER
You may not rent, lease, or sublicense the SOFTWARE. You may, however, transfer all your rights to use the SOFTWARE to another person or entity, provided that you transfer this Agreement with the SOFTWARE.

LIMITED WARRANTY
For ninety (90) days from your date of purchase, ChemicaLogic warrants that the magnetic media and the user documentation (if any) are free from defects in material and workmanship. ChemicaLogic will, at its option, either refund the amount you paid or provide you with corrected items at no charge provided that the defective item(s) is (are) returned to ChemicaLogic within ninety (90) days from the date of purchase. Except as specifically provided herein, ChemicaLogic makes no warranty, representation, promise, or guarantee, either express or implied, statutory or otherwise, with respect to the SOFTWARE, including but not limited to implied warranties of merchantability, fitness for a particular purpose and noninfringement. ChemicaLogic is not responsible for, and does not make any representation, warranty, or condition concerning product, media, software, or documentation not manufactured or supplied by ChemicaLogic, such as third parties' programs that are designed to use or include the SOFTWARE.

LIMITATION OF LIABILITY
Because software is inherently complex and may not be completely free of errors, you are advised to verify your work and to make backup copies. In no event will ChemicaLogic be liable for any damages whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss of business information, or other pecuniary loss) arising out of the use of or inability to use the software, user documentation, or related technical support, even if ChemicaLogic has been advised of the possibility of such damages. In no case shall ChemicaLogic' liability exceed the amount paid by you for the SOFTWARE. Because some states do not allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation may not apply to you.

GOVERNING LAW AND GENERAL PROVISIONS
This Agreement will be governed by the laws of the Commonwealth of Massachusetts U.S.A., excluding the application of its conflicts of law rules. This Agreement will not be governed by the United Nations Convention on Contracts for the International Sale of Goods, the application of which is expressly excluded. If any part of this Agreement is found void and unenforceable, it will not affect the validity of the balance of the Agreement, which shall remain valid and enforceable according to its terms. You agree that the SOFTWARE will not be shipped, transferred or exported into any country or used in any manner prohibited by the United States Export Administration Act or any other export laws, restrictions or regulations. This Agreement shall automatically terminate upon failure by you to comply with its terms. This Agreement may only be modified in writing signed by an authorized officer of ChemicaLogic Corporation.

U.S. GOVERNMENT RESTRICTED RIGHTS
The SOFTWARE and/or user documentation are provided with RESTRICTED AND LIMITED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer SOFTWARE clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer SOFTWARE - Restricted Rights at 48 CFR 52.227-19, as applicable. Manufacturer/contractor is ChemicaLogic Corporation, 99 South Bedford Street, Suite 56, Burlington MA 01803, USA.

MoistAirTab™ is Copyright © 1999-2010 by ChemicaLogic Corporation.

MoistAirTab™ is a trademark of ChemicaLogic Corporation.

ChemicaLogic® is a registered trademark of ChemicaLogic Corporation.

All other trademarks and copyrights are hereby acknowledged.
List of Figures

FIGURE 1: CHEMICALOGIC MOISTAIRTAB ON WINDOW'S START MENU.............5
FIGURE 2: ACCESS TO MOISTAIRTAB IN EXCEL 2003..6
FIGURE 3: ACCESS TO MOISTAIRTAB IN EXCEL 2007 OR EXCEL 2010............6
FIGURE 4: MOISTAIRTAB OPTIONS DIALOG..8
FIGURE 5: PSYCHROMETRIC PROPERTIES DIALOG (EXCEL VERSIONS)...........9
FIGURE 6: CONSTANT PROPERTY DIALOG BOX ...10
FIGURE 7: CHEMICALOGIC MOISTAIRTAB FUNCTIONS IN EXCEL’S FUNCTION WIZARD...11
FIGURE 8: EXCEL’S FUNCTION WIZARD FOR MOISTAIRTAB FUNCTION......11
FIGURE 9: EXCEL VBA REFERENCE TO MOISTAIRTAB..............................12
Overview and Features

MoistAirTab™ brings you a comprehensive set of moist air (humid air) properties — right in your spreadsheet — with “live” links to variable psychrometric conditions by cell reference. You never again have to copy or re-type any property values into your spreadsheet!

MoistAirTab™ is indispensable for professionals working in the field of air conditioning, power generation, paper and pulp, food processing, desiccant drying, compressor design and chemical process engineering.

Some of the unique features of MoistAirTab are:

- Direct “live” links to variable psychrometric conditions by cell reference
- Built-in MoistAirTab™ worksheet functions and user-interface dialog-boxes
- Choice of Metric/SI or English units
- Includes all standard psychrometric properties, as well as steam, water and ice properties
- Generate your own psychrometric charts and tables
- Save property values for export to other applications — limited only by the spreadsheet’s file transfer capability
- Spreadsheet simulators for moisture content expressions, streams mixing, heating, cooling, humidification, air dehydration, solids drying, multi-stage air compressor are included as examples
- Allows multiple -input specifications — up to 18 combinations of input variables. First independent variable can be either: Dry-bulb temperature (T_{db}), Humidity Ratio (W), or Relative Humidity (RH). Second independent variable can be either: Dry-bulb Temperature (T_{db}), Wet-bulb Temperature (T_{wb}), Humidity Ratio (W), or Relative Humidity (RH), Enthalpy (H), Entropy (S), or Volume (V)
Calculation results using MoistAirTab can be freely formatted and charted for presentation.

MoistAirTab uses an equation of state to compute all of the thermodynamic properties. MoistAirTab uses formulations that are approved by the American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc. (ASHRAE) as documented in the 1997 ASHRAE Handbook: Fundamentals. The equation-of-state used to compute the moist air properties are given in:

Reference

The range of validity for the properties of moist air is:

Pressure: \[0 \leq P \text{ (bar)} \leq 50, \text{ or } 0 \leq P \text{ (psi)} \leq 725 \]

Temperature: \[-100 \leq T \text{ (C)} \leq 372, \text{ or } -148 \leq T \text{ (F)} \leq 701 \]

What’s New in Version 2.0

MoistAirTab Version 2.0 offers a number of enhancements:

- MoistAirTab V2.0 supports Excel versions 2003, 2007 and 2010 running on Windows XP and later.

- Supports both 32-bit and 64-bit Excel 2010.

- Includes automatic installation (and uninstalling) on the supported platforms.

- The temperature range has been increased from 200°C to 372°C.
• The ability to use a numeric property code as well as a mnemonic string (the string version is case insensitive). For example, to calculate the enthalpy of moist air you can use either 19 or “Hm”.

• Added over 20 new properties for moist air, including transport properties and mass transfer properties.

Technical Support and Contact Information

ChemicaLogic offers free technical support with the purchase of MoistAirTab. If you have any problems during installation or use of MoistAirTab, please contact us at one of the addresses listed below.

Before requesting support, it would save both your time and our time if you could first do the following:

- Make sure you have read any relevant portions of the manual
- Isolate the problem to a small test case
- Have the version number of your copy of MoistAirTab ready
- Have the version number of the spreadsheet application and the operating system on which it is installed ready

You can contact us via any of the following paths:

By Telephone: 781.425.6738 (9 AM to 5 PM, EST)
By Fax: 781.425.6741
By Email: clc.support@chemicalogic.com
By Web: http://www.chemicalogic.com
By Mail: ChemicaLogic Corporation
99 South Bedford Street, Suite 207
Burlington, Massachusetts 01803
USA
Minimum System Requirements

You should not encounter any hardware or software problems in using MoistAirTab on any hardware that has one of the following spreadsheet applications pre-installed:

- Microsoft Excel 2003 or later running on Windows XP or later (32-bit and 64-bit operating systems are both supported).

Installation

MoistAirTab contains an automatic installation program that will install the add-in within Excel as well as certain example files, document files and the online help file.

To install MoistAirTab, simply click on the file SETUP-MOISTAIRTAB.EXE and follow the instructions on the screen.

Note

Before installing MoistAirTab on your machine, please make sure that Excel is not running.

Once installation is complete you can access MoistAirTab from Excel. If you need to access the User’s Guide and other documents at are installed, go to Window’s Start menu, click on Programs and you should see a folder called ChemicalLogic MoistAirTab as shown below:
Using MoistAirTab

The following sections describe how to access and use the various features of MoistAirTab.

Where is MoistAirTab?
As an add-in package to your spreadsheet application, MoistAirTab quietly becomes a part of your spreadsheet. You only see it when you need to use it. Just to make sure that MoistAirTab is available,

1. Start your spreadsheet application (if you have not already started it)
2. **Excel 2003 Users**: Click on the **Tools** menu. You should see a MoistAirTab pop-up menu somewhere near the bottom of the **Tools** menu
 Excel 2007 or 2010 Users: Click on the Add-ins ribbon and you will see the MoistAirTab menu.
3. Expand the MoistAirTab pop-up menu by clicking on it
4. The following figures show what you should see
Figure 2: Access to MoistAirTab in Excel 2003

MoistAirTab Menu

Figure 3: Access to MoistAirTab in Excel 2007 or Excel 2010
The MoistAirTab pop-up menu contains the following menu items:

1. **Psychrometrics**
 Selecting this menu item brings up the psychrometrics dialog box which helps you obtain the moist air properties at varying input conditions.

2. **Constant Properties**
 Selecting this menu item brings up the constant properties dialog box which you can use to select the required constant moist air property.

3. **Options**
 This menu item allows you to select the units and other configuration options. You can also change the units and model formulation from any of the MoistAirTab dialog-boxes.

4. **Help**
 Provides you with easy access to online help.

5. **About MoistAirTab**
 Gives you information regarding the version of MoistAirTab installed on your machine.

The following sections describe how to use the various capabilities of MoistAirTab.

Setting MoistAirTab Options
The options dialog box helps you in setting up the units to base your property calculations. All of the MoistAirTab dialog-boxes use the same options that you specify from the option dialog box.

You can access the MoistAirTab options from either the MoistAirTab pop-up menu or from any of the other MoistAirTab dialog boxes.

Use the following steps to set the MoistAirTab options (see Figure 4 for an illustration of the MoistAirTab options dialog box):

1. **Select units**
 Select the Metric radio button if you want properties in Metric/SI units or select the English radio button for properties English units.

2. **Select comment option**
 Check the comments box if you want MoistAirTab to place a comment regarding the property calculated and the units in the output cell.

3. **Select Pressure**
 You can enter a default pressure to be used by all of the dialog boxes. Note that you can override the default pressure in the psychrometric dialog box.
4. **Click OK**
 Click on the OK button to accept the changes. After you have clicked OK, all of the MoistAirTab dialog-boxes will use the specified units options.

 Note
 If you typically work with only one set of options, you need to only specify them once. MoistAirTab will remember the options even in subsequent sessions.

Using the Psychrometric Dialog Box

The psychrometric dialog-box helps you obtain the moist air properties at varying input conditions.

This dialog box automatically creates a call (with all the correct arguments) to the appropriate MoistAirTab function based on the input parameters you supply.

Use the following steps to calculate a saturated steam property (see **Figure 5** for an illustration of the psychrometrics dialog box):

1. **Select Options**
 Click on the Options button to bring up the options dialog-box from where you can select the units, as described in the previous section. If you previously selected the units, you can skip this step.

2. **Select input data**
 Use the drop-down box to select the type of independent variables to specify. Enter a cell reference (or point to a cell reference) in each of the input variables.
1. **Provide a value for the pressure (optional)**
 Optionally provide a value for the pressure or use the default value.

2. **Select moist air property required**
 Using the drop-down combo-box, select the property you want. Use the mouse or the cursor keys to scroll through the list of available steam properties until you come to the one you desire.

1. **Provide an output cell reference**
 Notice that MoistAirTab has already filled this in with the currently selected cell reference. If this is not where you want the results to go, select or type in a different cell reference.

2. **Click OK**
 MoistAirTab will calculate the requested steam property and place it in the specified output cell as a formula.

If you want a different moist air property, simply repeat the above steps. Alternatively, you could copy the cell containing the saturated steam property function and paste it in the location you want. You can then use the saturated dialog box to change the output steam property.

Figure 5: Psychrometric Properties Dialog (Excel versions)

Using the Constant MoistAirTab Properties Dialog Box

The constant properties dialog box gives you access to fundamental moist air properties, such as, molecular weights and property ranges.

The following steps illustrate how to use this dialog box (see the figure below for an illustration of this dialog box):
1. **Select Options**
 Click on the **Options** button to bring up the options dialog-box from where you can select the units, as described in the previous section. If you previously selected the units, you can skip this step.

2. **Select constant property required**
 Using the drop-down combo-box, select the constant property you want. Use the mouse or the cursor keys to scroll through the list of available steam properties until you come to the one you desire.

1. **Provide an output cell reference**
 Notice that MoistAirTab has already filled this in with the currently selected cell reference. If this is not where you want the results to go, select or type in a different cell reference.

2. **Click OK**
 MoistAirTab will calculate the requested steam property and place it in the specified output cell as a **formula**.

If you want a different constant property, simply repeat the above steps. Alternatively, you could copy the cell containing the constant property function and paste it in the location you want. You can then use the constant properties dialog box to change the output steam property.

The following figure illustrates the above steps for the Excel versions of MoistAirTab.

Figure 6: Constant Property Dialog Box

![Constant MoistAirTab Properties Dialog Box](image)

Using Excel’s Function Wizard
If you know the MoistAirTab function that you want to use, you can use Excel's function wizard to generate the function call. MoistAirTab installs all of the functions defined in a category called **Chemical Logic MoistAirTab** as shown below:
Selecting the MATDBRH to generate psychrometric properties at the specified dry bulb and wet bulb temperatures shows the function wizard:

If you need help on the function arguments or need to lookup the property codes click on the “Help on this function” located on the lower left corner of the function wizard.

Using MoistAirTab in Excel’s Visual Basic for Applications (VBA)
You can also use the MoistAirTab functions in you own macros or functions in Excel’s VBA. But before you use the MoistAirTab functions, you need to establish a reference to the add-in from the VBA editor.

To establish a reference to the MoistAirTab add-in, start the VBA editor in Excel 2003 from the Tools, Macro, Start Visual Basic Editor (or press the Alt+F11 keys) or in Excel 2007/2010 from the Developer tab select Visual Basic (if you do not see the Developer tab, please refer to this document on how to show the Developer tab: http://msdn.microsoft.com/en-us/library/bb608625.aspx). The Visual Basic editor comes up and from the
Tools menu Select References and place a check mark next to MoistAirTab and select OK:

Figure 9: Excel VBA Reference to MoistAirTab

Once a reference to MoistAirTab is established you can use the MoistAirTab functions in VBA just as you would any other function, as shown below:

FAQ: Frequently Asked Questions

How do I input the value for Relative Humidity in MoistAirTab?

The relative humidity is defined as a fraction between 0 and 1. To enter the relative humidity, either use a number between 0 and 1, or enter it as a
percentage, e.g. 25.4% (Please note that you must include the percent symbol % after the number – in Excel, a percent is always represented as a fraction).

The numbers generated with MoistAirTab do not match my psychrometric chart in English units. However, the Metric/SI numbers match. What’s going on?

There are two possibilities for this:

1. You may have changed the Units specification from Metric/SI to English from the Options dialog-box. Please make sure that the Default Pressure is set at the correct value in the selected unit. MoistAirTab does not automatically convert the value of the default pressure when the unit is switched. For example, the default pressure is 1 bar in Metric/SI units. When you change the units to English, the default pressure value remains 1, while the “Unit” has changed to psia. But in the mean time, you need to specify the default pressure value in psia unit, e.g. 14.69.

2. Even when you make the above change, you may still notice differences between printed psychrometric charts in English units versus the numbers generated by MositAirTab in Enthalpy and Entropy values. The reason is that some versions of printed charts use a different reference state for defining the thermodynamic path functions. For example, the popular Psychrometric Chart published by Carrier Corporation in 1947 and 1959 in English units use 0°F as the reference temperature whereas MoistAirTab uses 0°C (32°F) as the reference temperature (as recommended by ASHRAE). Please note that the choice of a reference state is arbitrary and should not affect the end result when using either the printed chart or MoistAirTab as one normally only deals with the changes in enthalpy and entropy rather than the absolute quantities.

For those who prefer to use the English units (I-P units) and insist that 0°F be used as the reference temperature for enthalpy and entropy, please note that the numeric difference between 32°F and 0°F is 7.686951 Btu/lb-dry-air in enthalpy and 0.016166 Btu/lb-dry-air/°F in entropy. To shift the enthalpy or entropy value from 32°F to 0°F you only need to add the value noted above from the enthalpy or entropy value obtained from the MoistAirTab. No shift is needed for other properties.
When I copy MoistAirTab generated formulae to different cells, they just repeat the same calculation. How do I remove the hard anchored cell reference when I copy a MoistAirTab function?

The "$" used in the formula is a convention shared by all spreadsheets for anchoring the cell reference to the row, the column or both (a fixed cell location). As a spreadsheet add-in, the MoistAirTab complies with the rules and conventions of the host spreadsheet.

MoistAirTab anchors all cell references to fixed cell locations by fixing both column and row locations ($Column$Row). When you wish to copy formulae with cell references, depending on your formulation, you will need to modify the anchors by removing either one or both of the "$" signs before copying the formula. If you single click the left mouse bottom when the mouse pointer is placed on the cell reference (for example, B12) in the formula bar on top of your Excel spreadsheet, and toggle the 4-way F4 key on your keyboard, you will see that the fixed cell reference is first changed to fixed column reference. Toggle again, changed to fixed row reference. Toggle once more, changed to no anchoring. Toggle once again, changed back to fixed cell reference. Alternatively, you could just go into the formula and delete the unwanted $ signs before copying the formula.

Why doesn't MoistAirTab allow entering values directly in the function dialog-box (as does SteamTab)?

This is intentional. Our experience in spreadsheet engineering has taught us that when we embed values directly into formulae, it becomes more difficult later to recreate the logic or debug the algorithm, since we only see the result of the formula, instead of a full description of input parameters. Referencing a cell reference for input to a formula not only documents our data source, but also allows Excel’s auditing tools to track all precedents and dependents thereby aiding debugging.

If you insist, you can directly input the value, but you will need to put up with some annoying Excel behavior. When you enter a value in any of the edit boxes, Excel will warn you that the cell reference is incorrect. Since you know better, simply ignore it and Excel will still proceed to compute the results.

Uninstalling MoistAirTab

To uninstall MoistAirTab, from Window’s Start menu, select Programs, ChemicaLogic MoistAirTab and then select Uninstall ChemicaLogic MoistAirTab. This will completely uninstall MoistAirTab from your computer.
You can also uninstall MoistAirTab from the Control Panel, Add or Remove Programs (or Programs and Features in Windows 7) and selecting ChemicaLogic MoistAirTab version 2.0 to uninstall.
Overview

The MoistAirTab add-in package is based on a set of 19 core functions that together calculate over 46 thermodynamic and transport properties of steam. You can use these functions directly in your spreadsheet or you can use MoistAirTab’s easy-to-use dialog boxes to automatically generate the appropriate function call with the correct arguments.

All of the MoistAirTab functions begin with the prefix MA. The MoistAirTab functions require as input two independent variables in addition to the total pressure (absolute). The first independent variable can be either: Dry bulb temperature \((T_{db}) \), Humidity Ratio \((W) \), or Relative Humidity \((RH) \). The second independent variable can be either: Dry-bulb Temperature \((T_{db}) \), Wet-bulb Temperature \((T_{wb}) \), Humidity Ratio \((W) \), or Relative Humidity \((RH) \), Enthalpy \((H) \), Entropy \((S) \), or Volume \((V) \). These functions are summarized in below.

MoistAirTab also includes functions for obtaining the barometric pressure and temperature as a function of altitude. A number of additional functions are provided that compute certain constant properties of air and water.

Note

All MoistAirTab functions begin with the prefix **MA**.
Functions for Psychrometric Properties

MoistAirTab provides 19 functions that compute the specified psychrometric property at specified two independent variables in addition to the atmospheric pressure (absolute). The psychrometric property codes are:

Table 1: Psychrometric Property Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Property</th>
<th>Metric/SI Units</th>
<th>English Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Tdb Dry bulb temperature</td>
<td>°C</td>
<td>°F</td>
</tr>
<tr>
<td>1</td>
<td>Twb Wet bulb temperature</td>
<td>°C</td>
<td>°F</td>
</tr>
<tr>
<td>2</td>
<td>Tdew Dew point temperature</td>
<td>°C</td>
<td>°F</td>
</tr>
<tr>
<td>3</td>
<td>P Pressure</td>
<td>bar</td>
<td>psia</td>
</tr>
<tr>
<td>4</td>
<td>Pws Saturation water vapor pressure</td>
<td>bar</td>
<td>psia</td>
</tr>
<tr>
<td>5</td>
<td>Pwet Saturation pressure at wet bulb temperature</td>
<td>bar</td>
<td>psia</td>
</tr>
<tr>
<td>6</td>
<td>Pdew Saturation pressure at dew point temperature</td>
<td>bar</td>
<td>psia</td>
</tr>
<tr>
<td>7</td>
<td>Xw Water mole fraction</td>
<td>mol%</td>
<td>mol%</td>
</tr>
<tr>
<td>8</td>
<td>Xa Air mole fraction</td>
<td>mol%</td>
<td>mol%</td>
</tr>
<tr>
<td>9</td>
<td>Mw Water weight fraction</td>
<td>wt%</td>
<td>wt%</td>
</tr>
<tr>
<td>10</td>
<td>Ma Air weight fraction</td>
<td>wt%</td>
<td>wt%</td>
</tr>
<tr>
<td>11</td>
<td>W Humidity ratio</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>12</td>
<td>Ws Saturation humidity ratio</td>
<td>dimensionless</td>
<td>dimensionless</td>
</tr>
<tr>
<td>13</td>
<td>RH Relative humidity</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>14</td>
<td>Va Volume of dry air</td>
<td>m³/kg dry air</td>
<td>ft³/lb dry air</td>
</tr>
<tr>
<td>15</td>
<td>Vm Volume of moist air</td>
<td>m³/kg dry air</td>
<td>ft³/lb dry air</td>
</tr>
<tr>
<td>16</td>
<td>Vw Volume of condensed water or ice</td>
<td>m³/kg</td>
<td>ft³/lb</td>
</tr>
<tr>
<td>17</td>
<td>Vg Volume of steam</td>
<td>m³/kg</td>
<td>ft³/lb</td>
</tr>
<tr>
<td>18</td>
<td>Ha Enthalpy of dry air</td>
<td>kJ/kg dry air</td>
<td>Btu/lb dry air</td>
</tr>
<tr>
<td>19</td>
<td>Hm Enthalpy of moist air</td>
<td>kJ/kg dry air</td>
<td>Btu/lb dry air</td>
</tr>
<tr>
<td>20</td>
<td>Hw Enthalpy of condensed water or ice</td>
<td>kJ/kg</td>
<td>Btu/lb</td>
</tr>
<tr>
<td>21</td>
<td>Hg Enthalpy of steam</td>
<td>kJ/kg</td>
<td>Btu/lb</td>
</tr>
<tr>
<td>22</td>
<td>Sa Entropy of dry air</td>
<td>kJ/(kg dry air °C)</td>
<td>Btu/(lb dry air °F)</td>
</tr>
<tr>
<td>23</td>
<td>Sm Entropy of moist air</td>
<td>kJ/(kg dry air °C)</td>
<td>Btu/(lb dry air °F)</td>
</tr>
<tr>
<td>24</td>
<td>Sw Entropy of condensed water or ice</td>
<td>kJ/(kg °C)</td>
<td>Btu/(lb °F)</td>
</tr>
<tr>
<td>25</td>
<td>Sg Entropy of steam</td>
<td>kJ/(kg °C)</td>
<td>Btu/(lb °F)</td>
</tr>
<tr>
<td>26</td>
<td>Cpa Heat capacity at constant pressure of dry air</td>
<td>kJ/(kg °C)</td>
<td>Btu/(lb °F)</td>
</tr>
<tr>
<td>27</td>
<td>Cpm Heat capacity at constant pressure of moist air</td>
<td>kJ/(kg °C)</td>
<td>Btu/(lb °F)</td>
</tr>
<tr>
<td>28</td>
<td>Cpw Heat capacity at constant pressure of water</td>
<td>kJ/(kg °C)</td>
<td>Btu/(lb °F)</td>
</tr>
<tr>
<td>29</td>
<td>Cpg Heat capacity at constant pressure of steam</td>
<td>kJ/(kg °C)</td>
<td>Btu/(lb °F)</td>
</tr>
<tr>
<td>30</td>
<td>Mua Viscosity of dry air</td>
<td>Pa.s</td>
<td>lb/(ft.hr)</td>
</tr>
<tr>
<td>31</td>
<td>Mum Viscosity of moist air</td>
<td>Pa.s</td>
<td>lb/(ft.hr)</td>
</tr>
<tr>
<td>32</td>
<td>Muw Viscosity of water</td>
<td>Pa.s</td>
<td>lb/(ft.hr)</td>
</tr>
<tr>
<td>33</td>
<td>Mug Viscosity of steam</td>
<td>Pa.s</td>
<td>lb/(ft.hr)</td>
</tr>
<tr>
<td>34</td>
<td>Ka Thermal conductivity of dry air</td>
<td>W/(m°C)</td>
<td>Btu/(hr.ft °F)</td>
</tr>
<tr>
<td>35</td>
<td>Km Thermal conductivity of moist air</td>
<td>W/(m°C)</td>
<td>Btu/(hr.ft °F)</td>
</tr>
<tr>
<td>36</td>
<td>Kw Thermal conductivity of water</td>
<td>W/(m°C)</td>
<td>Btu/(hr.ft °F)</td>
</tr>
<tr>
<td>37</td>
<td>Kg Thermal conductivity of steam</td>
<td>W/(m°C)</td>
<td>Btu/(hr.ft °F)</td>
</tr>
<tr>
<td>38</td>
<td>Pra Prandtl number of dry air</td>
<td>dimensionless</td>
<td>dimensionless</td>
</tr>
<tr>
<td>39</td>
<td>Prm Prandtl number of moist air</td>
<td>dimensionless</td>
<td>dimensionless</td>
</tr>
<tr>
<td>40</td>
<td>Prw Prandtl number of water</td>
<td>dimensionless</td>
<td>dimensionless</td>
</tr>
<tr>
<td>41</td>
<td>Prg Prandtl number of steam</td>
<td>dimensionless</td>
<td>dimensionless</td>
</tr>
<tr>
<td>42</td>
<td>Daw Diffusivity of water vapor in air</td>
<td>m²/s</td>
<td>ft²/hr</td>
</tr>
<tr>
<td>43</td>
<td>Scm Schmidt number of moist air</td>
<td>dimensionless</td>
<td>dimensionless</td>
</tr>
<tr>
<td>44</td>
<td>Rhw Density of moist air</td>
<td>kg/m³</td>
<td>lb/ft³</td>
</tr>
<tr>
<td>45</td>
<td>Ds Degree of saturation</td>
<td>dimensionless</td>
<td>dimensionless</td>
</tr>
</tbody>
</table>
Note

You can use either the numeric property code or the string version of the property code (the string version is case insensitive). For example, to calculate the enthalpy of moist air you can use either 19 or "Hm".

These functions are described in greater detail below.

MATDBTWB
Calculates the psychrometric property at the specified dry bulb temperature and wet bulb temperature.

Syntax
MATDBTWB(Tdb, Twb, property_code, pressure, units)

Arguments
Tdb is the dry bulb temperature (°C or °F).
Twb is the wet bulb temperature (°C or °F).
property_code is an integer or string property code that specifies the type of property required. See Table 1: Psychrometric Property Codes (page 17) for a listing of valid property codes.
pressure is the atmospheric pressure (absolute).
units is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks
• The specified pressure unit must be in bar if units is 0; and must be in psia if units is 1.
• If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error.

MATDBRH
Calculates the psychrometric property at the specified dry bulb temperature and relative humidity.
Syntax

MATDBRH(Tdb, RH, property_code, pressure, units)

Arguments

- **Tdb**: is the dry bulb temperature (°C or °F).
- **RH**: is the relative humidity (a fractional number between 0 and 1).
- **property_code**: is an integer or string property code that specifies the type of property required. See **Table 1**: Psychrometric Property Codes (page 17) for a listing of valid property codes.
- **pressure**: is the atmospheric pressure (absolute).
- **units**: is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks

- The specified pressure unit must be in bar if units is 0; and must be in psia if units is 1.
- If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error

MATDBW

Calculates the psychrometric property at the specified dry bulb temperature and humidity ratio.

Syntax

MATDBW(Tdb, W, property_code, pressure, units)

Arguments

- **Tdb**: is the dry bulb temperature (°C or °F).
- **W**: is the humidity ratio.
- **property_code**: is an integer or string property code that specifies the type of property required. See **Table 1**: Psychrometric Property Codes (page 17) for a listing of valid property codes.
- **pressure**: is the atmospheric pressure (absolute).
- **units**: is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.
Chemicalogic

Remarks
- The specified pressure unit must be in bar if units is 0; and must be in psia if units is 1.
- If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error.

MATDBH
Calculates the psychrometric property at the specified dry bulb temperature and specific moist air enthalpy.

Syntax
MATDBH(Tdb, H, property_code, pressure, units)

Arguments
- Tdb is the dry bulb temperature (°C or °F).
- H is the specific moist air enthalpy.
- property_code is an integer or string property code that specifies the type of property required. See Table 1: Psychrometric Property Codes (page 17) for a listing of valid property codes.
- pressure is the atmospheric pressure (absolute).
- units is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks
- The specified pressure unit must be in bar if units is 0; and must be in psia if units is 1.
- If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error.

MATDBS
Calculates the psychrometric property at the specified dry bulb temperature and specific moist air entropy.

Syntax
MATDBS(Tdb, S, property_code, pressure, units)

Arguments
- Tdb is the dry bulb temperature (°C or °F).
S is the specific moist air entropy.

property_code is an integer or string property code that specifies the type of property required. See Table 1: Psychrometric Property Codes (page 17) for a listing of valid property codes.

pressure is the atmospheric pressure (absolute).

units is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks
- The specified pressure unit must be in bar if units is 0; and must be in psia if units is 1.
- If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error.

MATDBV
Calculates the psychrometric property at the specified dry bulb temperature and specific moist air volume.

Syntax
MATDBV(Tdb, V, property_code, pressure, units)

Arguments
Tdb is the dry bulb temperature (°C or °F).
V is the specific moist air volume.

property_code is an integer or string property code that specifies the type of property required. See Table 1: Psychrometric Property Codes (page 17) for a listing of valid property codes.

pressure is the atmospheric pressure (absolute).

units is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks
- The specified pressure unit must be in bar if units is 0; and must be in psia if units is 1.
- If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error.
MATDBTDEW
Calculates the psychrometric property at the specified dry bulb temperature and dew point temperature.

Syntax
MATDBW(Tdb, Tdew, property_code, pressure, units)

Arguments
Tdb is the dry bulb temperature (°C or °F).
Tdew is the dew point temperature (°C or °F).
property_code is an integer or string property code that specifies the type of property required. See Table 1: Psychrometric Property Codes (page 17) for a listing of valid property codes.
pressure is the atmospheric pressure (absolute).
units is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks
- The specified pressure unit must be in bar if units is 0; and must be in psia if units is 1.
- If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error

MAWTWB
Calculates the psychrometric property at the specified humidity ratio and wet bulb temperature.

Syntax
MAWTWB(W, Twb, property_code, pressure, units)

Arguments
W is the humidity ratio.
Twb is the wet bulb temperature (°C or °F).
property_code is an integer or string property code that specifies the type of property required. See Table 1: Psychrometric Property Codes (page 17) for a listing of valid property codes.
pressure is the atmospheric pressure (absolute).
units is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value
CHEMICALOGIC

of 1.

Remarks
• The specified pressure unit must be in bar if units is 0; and must be in psia if units is 1.
• If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error

MAWTDB
Calculates the psychrometric property at the specified humidity ratio and dry bulb temperature.

Syntax
MAWTDB(W, Tdb, property_code, pressure, units)

Arguments
W is the humidity ratio.
Tdb is the dry bulb temperature (°C or °F).
property_code is an integer or string property code that specifies the type of property required. See Table 1: Psychrometric Property Codes (page 17) for a listing of valid property codes.
pressure is the atmospheric pressure (absolute).
units is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks
• The specified pressure unit must be in bar if units is 0; and must be in psia if units is 1.
• If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error

MAWRH
Calculates the psychrometric property at the specified humidity ratio and relative humidity.

Syntax
MAWRH(W, RH, property_code, pressure, units)
MAWH
Calculates the psychrometric property at the specified humidity ratio and specific moist air enthalpy.

Syntax
MAWH(W, H, property_code, pressure, units)

Arguments
W
is the humidity ratio.

H
is the specific moist air enthalpy.

property_code
is an integer or string property code that specifies the type of property required. See Table 1: Psychrometric Property Codes (page 17) for a listing of valid property codes.

pressure
is the atmospheric pressure (absolute).

units
is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks
• The specified pressure unit must be in bar if units is 0; and must be in psia if units is 1.
• If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error
MAWS
Calculates the psychrometric property at the specified humidity ratio and specific moist air entropy.

Syntax
MAWS(W, S, property_code, pressure, units)

Arguments
W is the humidity ratio.
S is the specific moist air entropy.
property_code is an integer or string property code that specifies the type of property required. See Table 1: Psychrometric Property Codes (page 17) for a listing of valid property codes.
pressure is the atmospheric pressure (absolute).
units is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks
• The specified pressure unit must be in bar if units is 0; and must be in psia if units is 1.
• If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error

MAWV
Calculates the psychrometric property at the specified humidity ratio and specific moist air volume.

Syntax
MAWV(W, V, property_code, pressure, units)

Arguments
W is the humidity ratio.
V is the specific moist air volume.
property_code is an integer or string property code that specifies the type of property required. See Table 1: Psychrometric Property Codes
MoistAirTab V2.0

Calculates the psychrometric property at the specified relative humidity and wet bulb temperature.

Syntax

\[
\text{MARHTWB(RH, Twb, property_code, pressure, units)}
\]

Arguments

- **RH**: is the relative humidity (a fractional number between 0 and 1).
- **Twb**: is the wet bulb temperature.
- **property_code**: is an integer or string property code that specifies the type of property required. See **Table 1**: Psychrometric Property Codes (page 17) for a listing of valid property codes.
- **pressure**: is the atmospheric pressure (absolute).
- **units**: is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks

- The specified pressure unit must be in bar if **units** is 0; and must be in psia if **units** is 1.
- If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns **#VALUE!** error
Syntax

MARHTDB(RH, Tdb, property_code, pressure, units)

Arguments

RH is the relative humidity (a fractional number between 0 and 1).

Tdb is the dry bulb temperature.

property_code is an integer or string property code that specifies the type of property required. See Table 1: Psychrometric Property Codes (page 17) for a listing of valid property codes.

pressure is the atmospheric pressure (absolute).

units is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks

• The specified pressure unit must be in bar if units is 0; and must be in psia if units is 1.

• If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error

MARHW

Calculates the psychrometric property at the specified relative humidity and humidity ratio.

Syntax

MARHW(RH, W, property_code, pressure, units)

Arguments

RH is the relative humidity (a fractional number between 0 and 1).

W is the humidity ratio.

property_code is an integer or string property code that specifies the type of property required. See Table 1: Psychrometric Property Codes (page 17) for a listing of valid property codes.

pressure is the atmospheric pressure (absolute).

units is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.
Remarks

- The specified pressure unit must be in bar if *units* is 0; and must be in psia if *units* is 1.
- If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error.

MARHH

Calculates the psychrometric property at the specified relative humidity and specific moist air enthalpy.

Syntax

\[
\text{MARHH}(\text{RH, } \text{H, } \text{property_code, } \text{pressure, } \text{units})
\]

Arguments

- **RH** is the relative humidity (a fractional number between 0 and 1).
- **H** is the specific moist air enthalpy.
- **property_code** is an integer or string property code that specifies the type of property required. See Table 1: Psychrometric Property Codes (page 17) for a listing of valid property codes.
- **pressure** is the atmospheric pressure (absolute).
- **units** is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks

- The specified pressure unit must be in bar if *units* is 0; and must be in psia if *units* is 1.
- If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error.

MARHS

Calculates the psychrometric property at the specified relative humidity and specific moist air entropy.

Syntax

\[
\text{MARHS}(\text{RH, } \text{S, } \text{property_code, } \text{pressure, } \text{units})
\]

Arguments

- **RH** is the relative humidity (a fractional number between 0 and 1).
CHEMICALOGIC

S is the specific moist air entropy.

property_code is an integer or string property code that specifies the type of property required. See Table 1: Psychrometric Property Codes (page 17) for a listing of valid property codes.

pressure is the atmospheric pressure (absolute).

units is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks
- The specified pressure unit must be in bar if units is 0; and must be in psia if units is 1.
- If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error.

MARHV
Calculates the psychrometric property at the specified relative humidity and specific moist air volume.

Syntax
MARHV(RH, V, property_code, pressure, units)

Arguments
RH is the relative humidity (a fractional number between 0 and 1).
V is the specific moist air volume.
property_code is an integer or string property code that specifies the type of property required. See Table 1: Psychrometric Property Codes (page 17) for a listing of valid property codes.
pressure is the atmospheric pressure (absolute).
units is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks
- The specified pressure unit must be in bar if units is 0; and must be in psia if units is 1.
- If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error.
Functions for Constant Properties

The functions in this category return constant air or water properties as well as the temperature and pressure ranges for the formulation used to compute the psychrometric properties.

MAMWW
Returns the molecular weight of water.

Syntax
MAMWW(units)

Arguments
- **Units** is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks
- If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error

MAMWA
Returns the molecular weight of air.

Syntax
MAMWA(units)

Arguments
- **Units** is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks
- If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error

MATMIN
Returns the minimum dry bulb temperature that can be used.

Syntax
MATMIN(units)
CHEMICALOGIC

Arguments
Units is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks
• If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error

MATMAX
Returns the maximum dry bulb temperature that can be used.

Syntax
MATMAX(units)

Arguments
Units is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks
• If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error

MAPMIN
Returns the minimum atmospheric pressure (absolute) that can be used.

Syntax
MAPMIN(units)

Arguments
Units is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks
• If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error

MAPMAX
Returns the maximum atmospheric pressure (absolute) that can be used.
Syntax

MAPMAX(\textit{units})

Arguments

- \textit{Units} is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks

- If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns \texttt{#VALUE!} error.

MAPZ

Returns the atmospheric pressure (absolute) at the specified altitude or height above sea level.

Syntax

MAPZ(\textit{height, units})

Arguments

- \textit{Height} height above seal level (use a negative number for depth below sea level).
- \textit{Units} is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks

- If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns \texttt{#VALUE!} error.

MATZ

Returns the dry bulb temperature at the specified altitude or height above sea level.

Syntax

MATZ(\textit{height, units})

Arguments

- \textit{Height} height above seal level (use a negative number for depth below sea level).
Units is an integer argument (optional). For Metric/SI units, specify a value of 0 (or leave empty). For English units, specify a value of 1.

Remarks
- If any of the arguments are invalid or if the arguments are outside the acceptable bounds, the function returns #VALUE! error